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Prediction of chaotic instabilities in a dragline bucket swing
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Abstract

The occurrence of chaotic instabilities is investigated in the swing motion of a dragline bucket during operation cycles. A dragline is a
large, powerful, rotating multibody system utilised in the mining industry for removal of overburden. A simplified representative model of
the dragline is developed in the form of a fundamental non-linear rotating multibody system with energy dissipation. An analytical predictive
criterion for the onset of chaotic instability is then obtained in terms of critical system parameters using Melnikov’s method. The model is
shown to exhibit chaotic instability due to a harmonic slew torque for a range of amplitudes and frequencies. These chaotic instabilities could
introduce irregularities into the motion of the dragline system, rendering the system difficult to control by the operator and/or would have
undesirable effects on dragline productivity and fatigue lifetime. The sufficient analytical criterion for the onset of chaotic instability is shown
to be a useful predictor of the phenomenon under steady and unsteady slewing conditions via comparisons with numerical results.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Multibody dynamical behaviour in a rotating multibody sys-
tem is typically complex in nature, due to the non-linear interac-
tions resulting from Coriolis and relative accelerations of com-
ponents. Linear analyses of such systems are valid only within
prescribed limits and approximations of the motion of compo-
nent parts. Often a non-linear analysis is required to fully un-
derstand the dynamics and to enhance operation across a wide
range of conditions. Recent attention has therefore concentrated
on investigating non-linear instabilities, such as chaotic vibra-
tions, that can arise in rotating multibody systems.

Moon [1] provides a wide review of physical systems that
are known to exhibit chaotic vibrations, including a range of
multibody systems. Mechanical systems of interest include
helicopters, satellites, robotic manipulators and transmission
mechanisms in trains and automobiles. Initial fundamental
research includes contributions from Holmes and Marsden [2]
and Koiller [3] on the non-linear behaviour of a rigid body
with an attached flywheel. More recently, Meehan [4] has
shown chaotic instability in a rotating body with a tuned mass
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damper [5], a torsional driveline incorporating a Hooke’s Joint
and a dual-spin spacecraft with dissipation. The primary con-
tribution of the present research is the investigation of chaotic
instabilities in another practical form of a fundamental rotating
multibody system; namely a dragline.

Draglines are used as the primary means for removal of over-
burden in open-cut coal mining and are typically the bottleneck
for productivity in this process. The dynamics of the dragline
bucket swing motion during house slewing (rotation) is of par-
ticular importance from the viewpoint of structural loading and
efficient operation [6]. Excessive amplitudes of this motion re-
sult in premature fatigue damage, undue wear of dragline com-
ponents and could render the system difficult to control. Recent
attempts at automation have focused on the dragline slewing
phase of operation, however, an experienced human operator
generally exceeds the performance of any artificial control sys-
tem. This may be due to the inherently complex and non-linear
regimes of dynamic conditions experienced by the dragline.

In this paper, a simplified formulation of the non-linear equa-
tions of motion governing the dynamics of the dragline system
is presented. Global stability analysis results are then described
and regions of non-linear behaviour are identified. Subse-
quently, the full analytical solution for the unperturbed system
is obtained in order to identify homoclinic orbits. Once the
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system model is transformed into Hamiltonian form, Mel-
nikov’s method is applied to obtain an analytical criterion.
Numerical and analytical results, describing the presence of
chaotic instabilities under different operating conditions, are
compared.

2. Modelling

A dragline system consists of a rotating assembly comprised
of a house (containing primary components such as drive mo-
tors, controls and an operator cabin), a boom structure and a
bucket, as shown in the simplified model of Fig. 1. The normal
operation cycle consists of three main phases: (1) a digging
phase, in which the bucket is filled with overburden; (2) a slew
phase, in which the house and boom is swung (or slewed) about
a vertical axis while the bucket is hoisted, and (3) a dump and
return slew phase during which the overburden is dumped and
the house and boom return to the dig position. Control of the
hoist and drag rope lengths allows positioning of the bucket in
the vertical boom plane. However, the bucket is free to swing
normal to that plane and a considerable amount of operator
skill is required to control this undesirable motion.

For the purposes of investigating non-linear behaviour asso-
ciated with the predominant motions of the dragline, a simpli-
fied rotating multibody model based on Fig. 1 is developed.
Referring to Fig. 1, the house and boom structure is modelled
as a rigid body that rotates about the vertical axis with mo-
ment of inertia, Ih, and the bucket, a point mass that swings in
the vertical plane with dissipation. The degrees-of-freedom of
the system are given by � and �, describing the bucket swing
rotation about A and rotation of the system about O, respec-
tively. The bucket is centred on the body fixed y-axis at a dis-
tance h from A and has a point mass of m that moves in the

Fig. 1. Simple model of a slewing dragline.

yz-plane at a distance d from O. The bucket is considered to be
acted upon by gravity, g, in the −Y direction, and has a damping
torque proportional to the bucket angular velocity. This damp-
ing torque is associated with viscous losses in the ropes and
sheaves and has a constant, ct . The instantaneous moment of
inertia of the system about O, varies with the position of the
bucket. For � = 0, the system is considered to have a moment
of inertia I about the Y-axis. A net slew torque, M, about the Y-
axis is generated from the slew transmission controlled by the
operator.

The equations of motion for the system may be obtained us-
ing Lagrange’s Equations with dissipation, as detailed in Ap-
pendix A. For convenience of stability analysis, these equations
may be nondimensionalised to the form,

[
Ĩ + sin2�

]
�′′ + 2�′�′ sin � cos �

+ d̃
(
�′′ cos � − �′2 sin �

)
= M̃ , (1)

�′′ + 2��′ +
(

1 − �′2 cos �
)

sin � + d̃�′′ cos � = 0, (2)

where the following dimensionless quantities are used:

�� = �ot, Ĩ = I

mh2 , � = ct

2m�oh2 ,

d̃ = d

h
, M̃ = M

mh2�2
o

(3)

and the natural frequency of the bucket swing under no slewing
is �o = √

g/h. In (1) and (2), the prime notation ( )′ denotes
differentiation with respect to dimensionless time, ��. Eq. (1)
can be considered to be the moment equation in the XZ plane.
The coefficient of �′′ in Eq. (1) represents the instantaneous
moment of inertia of the system about O, while the last two
terms represent the moments arising from the Coriolis and other
inertia forces with respect to O. Eq. (2) represents the moment
equation for the bucket motion in the boom fixed yz plane. The
first three terms are typical for a damped pendulum, while the
last two terms characterise the effects of the centrifugal and an-
gular accelerations, arising due to the moving reference plane.
Eqs. (1) and (2) are coupled through three non-linear terms re-
sulting from the rotating multibody motion of the system.

For subsequent analysis, it is convenient to define the en-
ergy and angular momentum quantities that are conserved un-
der unperturbed conditions. The derivations of these quantities
are found in Appendix A. The total mechanical energy of the
system, E, may be derived in nondimensional form as

Ẽ = 1
2

(
Ĩ + sin2 �

)
�′2 + 1

2 �′2 + d̃�′�′ cos � + 1 − cos �,

where Ẽ = E

mh2�2
o

. (4)

Similarly, the y component of angular momentum of the system
about O, HOy , that is conserved when M = 0, may also be
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Fig. 2. Phase space curves for slewing dragline model, (a) Ĥ 2
oy > Î2;

(b) Ĥ 2
oy � Î2.

the homoclinic orbits in Fig. 2a first exist and are smallest when
the angular momentum first exceeds the critical value described
by Eq. (9). Therefore it is expected that any onset of chaotic
instability will first occur for small bucket swing angles.

5. Melnikov’s method

Melnikov’s method was used to obtain an analytical criterion
for the onset of chaotic instability in the perturbed dragline
system based upon the unperturbed phase space. The simplest
form of Melnikov’s method considers systems of the form:

ẋ = f(x) + �g(x, t); x =
(

u

v

)
∈ R2, (12)

where f(x) is considered to be the unperturbed Hamiltonian
system of state equations defined on R2, and �g(x, t) is a small
periodic perturbation which is not necessarily Hamiltonian. In
order to apply Melnikov’s method on the dragline system, the
equations of motion (1) and (2) need to be transformed to the
form of (12). Under the assumption of a small bucket swing
angle, the harmonic terms of (1) and (2) are approximated by

sin � ≈ �, cos � ≈ 1 (13)

and the system equations of motion reduce to a form similar
to that of a rotating body with internal energy dissipation [5].
Therefore, it is convenient to transform the dragline model into

this form using the dimensionless quantities,

�� = �t, ŷ = �

d̃
, �̃ = �

�o
, Î = Ĩ

d̃2
, ĉ = 2�

�̃
,

k̂ = 1

�̃
2 , M̂ = M̃

d̃2�̃
2 , ĤOy = H̃Oy

d̃2�̃
, (14)

where � is the frequency of the perturbing torque. Using (13)
and (14), the equations of motion (1) and (2) can be expressed
in Hamiltonian form as

dŷ/d�� = p̂y

(
Î + ŷ2

) (
Î − 1 + ŷ2

)−1
,

dp̂y/d�� = ŷ

(Î + ŷ2)2

×
{
Ĥ 2

Oy − k̂
(
Î + ŷ2

)2 +
[
p̂y

(
Î + ŷ2

)
	

(
ŷ
)]2

}

+ �
[
M̂E cos � + 2ŷM̂E

(
ĤOy/Î

)
sin �

+ŷ
(
M̂2

E/Î
)

sin2� − ĉp̂y

(
Î + ŷ2

)2
	

(
ŷ
)]

+ O
(
�2

)
, (15)

where the generalised momentum, p̂y , is defined by

p̂y = ŷ′ (Î − 1 + ŷ2
)

/
(
Î + ŷ2

)
(16)

and a slew torque of the form M̂ = M̂E cos � is considered. For
Eq. (15), a Taylor’s series has been used to expand the pertur-
bational terms with � = 1/Î , so that only first order terms have
been retained. More details of this transformation are provided
in Meehan [4]. It is noted that the unperturbed phase space
{ŷ, p̂y}, will have the same qualitative behaviour as the phase
space {�, �′}, illustrated in Fig. 2.

Eq. (15) is in the form appropriate for the application of Mel-
nikov’s method. For brevity, the primary steps of the Melnikov
analysis are outlined, as details of a very similar analysis is pro-
vided in Meehan [4]. The Melnikov function, denoted M(t0)

is written as the integral

M(t0) =
∫ ∞

−∞
f (q0(t)) ∧ g (q0(t), t + t0) dt , (17)

where f(x) and g(x, t) have been defined previously in
Eq. (12), the symbol ∧ is the wedge product defined by
a ∧ b = a1b2 − a2b1, and q0(t) is the solution for the set of
homoclinic orbits in the unperturbed system. The equations
describing the homoclinic orbits depicted in Fig. 2a, for small
out of plane angle, �, may be obtained via solution to Eqs.
(10), subject to (11), (13) and (14), as[
ŷ0 dŷ0/d��

] = [√

 sech(ϑ��)

−ϑ
√


 sech (ϑ��) tanh(ϑ��)
]

, (18)

where


 =
(

2Ẽ − Ĩ
)

/d̃2, ϑ =
√(

2Ẽ − Ĩ
)

/
(
Ĩ − d̃2

)
/� (19)
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and the subscript ( )0 denotes the closed solution for the ho-
moclinic orbits. Using Eqs. (18), (12) and (15) the Melnikov
function may be obtained explicitly. In particular, under the

assumption that M̂E>Î

√
k̂/

(
Î−1

)
or M̂E>2ĤOy cosh(�/2ϑ),

a relationship for the critical torque amplitude may be ex-
pressed as

M̂E > 2ĉϑ3
(

5Î + 2

) /⎛

⎝15�

√
ϑ2



sech2

( �

2ϑ

)
+ Ĥ 2

Oy

Î 2
cosech2

( �

2ϑ

)⎞
⎠ . (20)

Eq. (20) represents a sufficient criterion for the occurrence of
chaotic instability in a dragline under slew torque perturba-
tions, for small bucket swing angles. It is based on perturba-
tions about a nominal (unperturbed) condition of constant (or
quasistatic) angular momentum. In the context of a dragline,
this unperturbed condition represents a constant slewing of
the dragline in one direction, known as “dumping on the fly”,
when slew angles close to 180◦ are required. The criterion may
also be considered to be based upon instantaneous quasistatic
conditions during the swing or return swing phases of normal
operation. In the following analysis, the occurrence of chaotic
instabilities under these steady slewing conditions is inves-
tigated before extending the analysis to represent normal
(unsteady) slewing operation.

6. Chaotic instability in a dragline under steady slewing

Predictions of the occurrence of chaotic instability in a
dragline under steady slewing motion were investigated both
analytically and numerically for realistic dragline parameters.
For this study, the mechanical parameters for a standard 1370
BE dragline were used: m=66 000 kg, ct=4.1 MNms, d=87 m,
h = 100 m, Ih = 1.588 × 109 kg m2 and � = 0.05 → 0.2 rad/s.
For these parameters, the natural frequency of the bucket
swing under no slew conditions is, �0 = 0.31321 rad/s. Slew
conditions were chosen to represent typical operational condi-
tions. In particular, the slew torque frequency was chosen to
be of the same order as the actual swing cycle used in dragline
operation. According to the criterion of Eq. (20), initial slew
rates approaching the critical value of �o (from above) were
investigated to minimise the critical torque amplitude to values
within the maximum slew torque available on current draglines
(of order 50 MNm). Numerical integration of Eqs. (1) and (2)
was performed using a Huen predictor–corrector method with
at least 80 timesteps over the bucket response cycle; ensuring
convergence of the numerical solution. Plots were generated
after a number of pre-iterates (no recording) of forcing periods,
in order to ensure transients had subsided.

Fig. 3 shows an example of a bifurcation diagram gener-
ated for an initial slew rate of �̇i = 0.32 rad/s, a slew torque
frequency of 0.05 rad/s and 200 pre-iterates. The diagram
shows evidence of chaotic instability for increasing torque
amplitudes characterised by period doubling bifurcations. The
initial occurrence of steady state chaotic instability may be

seen to occur with a disturbance slew torque amplitude of ap-
proximately ME = 390 kNm. In the same manner, the criti-
cal torque amplitudes for a number of bifurcation diagrams
at different slew torque frequencies were determined in order
to obtain a quantitative comparison with analytical predictions
using Eq. (20). Fig. 4 summarises these results and highlights

the conservative nature of the Melnikov criterion for predicting
the onset of steady-state chaotic instability. The agreement be-
tween the analytical and numerical results is typical of similar

Fig. 3. Bifurcation diagram for the dragline under steady slew (�) conditions.

Fig. 4. Comparison of analytical and numerical results for the chaotic insta-
bility of the dragline bucket swing under steady slew conditions.
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Fig. 7. Comparison of analytical and numerical results for the chaotic insta-
bility of the dragline bucket swing under unsteady slew conditions.

Table 1
Critical slew torque amplitude sensitivity to process parameters

Parameter description Change in
critical torque
amplitude∗ (%)

House inertia (Ih) +5.1
Bucket mass (m) +1.6
Hoist rope length (h) −4.7
Horizontal distance of (d) +3.3
bucket from slew axis
Bucket swing damping (ct) ≈ 0
House slew damping (ch) 6.7
Slew torque frequency (�) 10.5

∗Due to a +10% change in parameter based on nominal dragline conditions.

a useful conservative prediction for the onset of chaotic in-
stability over a wide range of slew torque frequencies. Fig. 7
also shows a plot of the critical slew torque for the case of no
house slew damping. The stabilising effect of house slew damp-
ing is seen to be greater for lower torque frequencies, in line
with (23).

Based on these results it was of interest to investigate the
effect of changes in dragline parameters on the critical slew
torque amplitude. Using Eqs. (20)–(23), the percentage changes
in critical torque amplitude due to a 10% increase in the dragline
parameters were determined and are presented in Table 1. It
is noted that results of similar magnitude but of opposite sign
were obtained for a 10% decrease. The sensitivity results are
in accordance with the predictions of the approximate criterion
(23) on it’s own, confirming the previous results. This indicates
that the lower bound for critical torque amplitude is determined
solely by the natural frequency (rope length), the system inertia
(house inertia, bucket mass and position), house slew damping
and the period for a cycle. In particular, for a given slew angle
range (governed by the dig and dump points), the system is
most sensitive to changes in house inertia, slew damping and the
hoist rope length. House inertia provides the main contribution
to the system inertia (76%), hence the effect of changes in

bucket mass is less as it only contributes approximately 24%.
The critical torque amplitude is twice as sensitive to changes in
the bucket horizontal position, d, as compared to mass, m, due
to the md2 contribution to the system inertia. It may be inferred
that the onset of chaotic instability is relatively insensitive to
dragline boom size since the effects of changes in d and h tend
to cancel each other. In general, the predictions of Table 1 were
found to be evident in numerical simulations using bifurcation
diagrams.

8. Conclusion

Analytical and numerical results have shown the existence
of chaotic instabilities in a model of a dragline with internal
energy dissipation, under perturbed steady slewing as well as
normal unsteady conditions. In particular, closed form analyt-
ical criteria and numerical verification of these predictions of
chaotic instability are presented in this fundamental rotating
multibody system. An analytical criterion for the occurrence
of a chaotic instability region in system parameter space has
been derived using Melnikov’s analysis. The chaotic region oc-
curs near homoclinic orbits in the system’s phase space, which
may exist in the dynamics of a slewing dragline with damp-
ing under normal operation. Subsequently the analytical results
have been compared to various numerical results for different
parameter configurations. It is shown that Melnikov’s method
provides a conservative estimate for the onset of steady state
chaotic instability. In particular, the results confirm that the an-
alytical criteria are useful for predicting and avoiding the onset
of chaotic instability in a dragline under steady and unsteady
slewing conditions. Chaotic instability is shown to occur more
readily for a higher slew torque amplitude, lower slew torque
frequency, lower house inertia and for slew rates close to but
greater than the natural frequency of the bucket pendulum-like
motion.

From this analysis it would appear that steady state chaotic
instability is possible in dragline operating cycles, during high
slew rate conditions. Its occurrence adversely affects dragline
productivity and maintenance, and may be underlying difficul-
ties with automation. With present trends in technology towards
increasing power and decreasing dragline inertia, it is expected
that this phenomenon may become more prevalent. The present
analysis provides identification of the critical parameters as-
sociated with the phenomenon and a design tool by which to
avoid its occurrence. Recommendations for useful extensions to
the analysis include the investigations of; a more realistic slew
torque profile, the effects of digging/bucket load force changes,
a range of bucket positions, changing constraints and catenary
effects of the dragline ropes during normal cycle operation.
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Appendix A. Derivation of equations of motion

The equations of motion of the dragline model described in
Fig. 1 may be derived using Lagrange’s Method in a similar
manner to that described in Corke et al. [6]. In particular, the
kinetic energy of the system, T, may be considered to be the
sum of components arising from the motion of the inertia of
the house and boom, Ih, and that of the bucket mass, respec-
tively, such that,

T = 1
2Ih�̇

2 + 1
2 mṙ2, (A.1)

where ṙ is the velocity vector of the bucket point mass in the
inertial frame of reference O. By use of elementary coordinate
frame transformations from the frame of reference A, the posi-
tion vector of the bucket point mass, r, may be determined in
the inertial frame of reference O as

r = (d cos � − h sin � sin �)î − h cos �ĵ
− (d sin � + h sin � cos �)k̂, (A.2)

where î, ĵ, k̂ are the unit vectors along the X, Y, Z axes, respec-
tively.

The potential energy due to gravity is proportional to the
bucket vertical position and may be defined as

V = mgh(1 − cos �), (A.3)

where potential energy is defined as being zero when the bucket
swing angle � = 0. The energy dissipated due to bucket swing
motion may be defined as

D = 1
2 ct �̇

2
. (A.4)

Substitution of expressions for T, V and D from Eqs. (A.1–A.4)
into Lagranges equation yields the equation of motion for the
generalised parameters q1 = � and Q1 = M as[
I + m(h sin �)2

]
�̈ + 2m(h sin �)

d

dt
(h sin �)�̇

+ md
d2

dt2 (h sin �) = M , (A.5)

where

I = Ih + md2. (A.6)

Similarly, the equation of motion for the torque balance asso-
ciated with the bucket swing motion may be derived for q2 = �
and Q2 = 0 as

mh2�̈ + ct �̇ + mgh sin � − mh2 sin � cos ��̇
2

+ mdh cos ��̈ = 0, (A.7)

where the last two terms characterise the effects of the cen-
trifugal and angular accelerations respectively. Eqs. (A.5) and
(A.7) completely describe the system dynamics, which is of
order five since M is assumed to vary periodically with time.

For the purposes of stability analysis it is convenient to define
the energy and angular momentum quantities that are conserved
in unperturbed conditions. The total mechanical energy of the
system, E, is simply given by T +V using Eqs. (A.1–A.3). The
y component of angular momentum of the system about O, that
is conserved when M = 0, may also be expressed as

HOy = Ih�̇ + compĵ(mr × ṙ) =
(
I + m(h sin �)2

)
�̇

+ md
d

dt
(h sin �). (A.8)

Appendix B. Stability of equilibrium points using Lya-
punov’s direct method

For each of the critical points Xeq described by Eq. (6),
a suitable Lyapunov function for the system may be chosen
using the total mechanical energy of the system in the form
L̃ = Ẽ − ẼC, where ÊC is a constant equal to the total energy
at a particular critical point. This may be expressed in terms of
X = [X1 X2 X3]T = [� �′ �]T using Eqs. (4) and (5) as

L̃ =
[
H̃ 2

Oy −
(
d̃X2 cos X1

)2
]

/
[
2

(
Ĩ + sin2 X1

)]
+ X2

2

/2 + 1 − cos X1 − ÊC. (B.1)

By the use of Eqs. (1) and (2), the time derivative of this function
may be obtained as

L̃′ = Ẽ′ = −2�X2
2 + M̃X3. (B.2)

Under the condition of no external torque, M̃ = 0, inspection
of (B.2) reveals that L̃′ is negative semi-definite. It may also
be noted that L̃(X) → ∞ as ‖X‖ → ∞, indicating that the
Lyapunov function L̃ is radially unbounded. Under these con-
ditions, asymptotic stability cannot usually be concluded since
L̃′ is negative semi-definite. However, by the use of the the-
orem described in Junkins and Kim [8] it may be shown that
asymptotic stability can be concluded since

L̃′′ = 0 for all X ∈ Z

and

L̃′′′ < 0 for all X ∈ Z,

L̃′′′ = 0 for all X ∈ Xeq,

where Z denotes the set of points for which L̃′ vanishes. The
constant ẼC may be calculated for the first equilibrium point
described by [� �′ �′]T = [0 0 H̃Oy/Ĩ ]T as

ẼC = H̃ 2
Oy

2Ĩ
. (B.3)

By use of Eqs. (B.1) and (B.3) the Lyapunov function may then
be given by

L̃ =
(1 − cos X1)

(
2Ĩ

(
Ĩ + sin2 X1

)
− H̃ 2

Oy(1 + cos X1)
)

+ X2
2 Ĩ

(
Ĩ − d̃2 +

(
1 − d̃2

)
sin2 X1

)
2Ĩ

(
Ĩ + sin2 X1

) . (B.4)
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