
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Equivalence of four-point and three-point rainflow cycle
counting algorithms

C.H. McInnes *, P.A. Meehan

CRC Mining, School of Engineering, The University of Queensland, Building 45, Brisbane QLD 4072, Australia

Received 19 October 2006; received in revised form 28 February 2007; accepted 6 March 2007
Available online 20 March 2007

Abstract

Two forms of the rainflow cycle counting algorithm for fatigue damage prediction are shown to be equivalent, namely the three-point
algorithm as presented by Bannantine et al. [Bannantine JA, Comer JJ, Handrock JL. Fundamentals of metal fatigue analysis. Engle-
wood Cliffs, NJ: Prentice-Hall; 1990], and the four-point algorithm as presented by Amzallag et al. [Amzallag C, Gerey JP, Robert JL,
Bahuaud J. Standardization of the rainflow counting method for fatigue analysis. Int J Fatigue 1994;16:287–293]. While it can be dem-
onstrated by example that the same result is obtained by the two algorithms, no generalised proof of their equivalence has previously
been presented. The proof is built on several identified properties of the four-point algorithm, including that certain modifications to
the stress series being analysed do not alter the outcome.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Fatigue analysis; Rainflow method; Cycle counting methods; Damage; Load histories

1. Introduction

Metal fatigue is of critical importance in parts subject to
dynamic loads because it can result in sudden catastrophic
failure at nominal stress levels well below the yield stress.
The phenomenon of fatigue was first examined in detail
in the 1800s. Thomas Woehler conducted the first fatigue
test in 1852 [1] which lead to the discovery of the ‘fatigue
limit’; the stress range below which fatigue does not occur
in steel. The typical shape of an S–N curve, which relates
fatigue life (number of cycles to failure) to stress range
for a constant amplitude test, was clarified in 1910 by Bas-
quin [2]. The linear damage rule, first suggested by Palm-
gren in 1924, states that the amount of damage caused by
a stress cycle is independent of the order in which the stress
cycles occur [2]. This rule is not strictly accurate as tests
have shown that the residual compressive stress at the
crack tip caused by a tensile overload can temporarily

arrest crack growth. However, it is generally considered a
reasonable approximation for typical stress profiles
encountered in practice.

It was not until the late 1960s that a suitable algorithm
was developed for estimating fatigue damage (in terms of
partial consumption of the lifetime of a part) from a stress
profile that does not consist of steady or quasi-steady oscil-
lations in stress. This ‘rainflow’ cycle counting algorithm [3]
identifies hysteresis loops in stress–strain space. In order to
estimate the fatigue damage, the impact of each individual
hysteresis loop is assumed to be the same as the impact of a
hysteresis loop of the same magnitude during a constant
amplitude (alternating stress) test. The fraction of fatigue
life consumed by a single hysteresis loop of a given stress
magnitude is the inverse of the number of cycles to failure
during such a test.

The rainflow algorithm has been adapted since the 1960s
for use by computers. Two different forms are currently in
popular use. The first algorithm, presented by Bannantine
et al. [2] is most similar to the original one and is referred to
as the three-point algorithm. The alternative four-point
algorithm was popularised by Amzallag et al. [4]. The same

0142-1123/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijfatigue.2007.03.006

* Corresponding author. Tel.: +61 7 33652969; fax: +61 7 33654799.
E-mail address: c.mcinnes@uq.edu.au (C.H. McInnes).

www.elsevier.com/locate/ijfatigue

Available online at www.sciencedirect.com

International Journal of Fatigue 30 (2008) 547–559

International
Journalof

Fatigue

Author's personal copy

method for estimating the fatigue damage for a given hys-
teresis loop is incorporated into both algorithms; it is the
method of identifying the hysteresis loops (i.e. the method
of counting cycles) that differs.

In this paper, a general proof that the two algorithms
are equivalent is provided. The two algorithms are first
defined in Section 2. In Section 3, some properties of the
four-point algorithm which are used to form the proof
are defined. Section 4 contains the proof of equivalence
of the two algorithms. It is first shown in Section 4.1 that
the outcome of the four-point algorithm is not changed
by rearranging the stress series prior to analysis. Sections
4.2 and 4.3 show that after these manipulations, the two
sets of criteria for identifying hysteresis loops are equiva-
lent. These two sections assume that there is only one over-
all maximum stress peak in the original series. By including
additional manipulations to the stress series, Sections 4.4
and 4.5 expand on the previous sections to give a general-
ised proof of the equivalence of the two algorithms without
any assumptions about the stress series being analysed.

2. Definition of rainflow counting algorithms

Rainflow cycle counting algorithms are methods for
comparing measured stress data of varying amplitude with
constant amplitude stress data. They identify closed hyster-
esis loops in stress–strain space and provide a mechanism
for dealing with open hysteresis loops. Rainflow algorithms
may be described in terms of the ‘pagoda analogy’ [2,5,6],
however this form of the algorithm will not be presented
here.

In the following subsections, the three and four-point
algorithms will be described with reference to the arbitrary
stress signal of Fig. 1, shown in stress–strain and stress–
time spaces. The unmodified stress series is shown in
Fig. 1a and b, while the rearrangement of the same series
required in the three-point algorithm is shown in Fig. 1c

and d. The hysteresis loops are easiest to identify visually
in the stress–strain plot of Fig. 1a. The closed hysteresis
loops are bound by stress value pairs EF and GH, while
the open hysteresis loops are bound by AD and BC. With
both three- and four-point algorithms, the stress pairs AD,
BC, EF and GH in Fig. 1 are identified as the hysteresis
loops. In order to do this, the peaks and valleys (local max-
ima and minima) must first be extracted from measured
stress data to obtain the input for the algorithms. The hys-
teresis loops are then extracted from the series of peaks and
valleys s[]. The algorithms are defined more rigorously in
the subsequent sections to facilitate the generalised proof
of equivalence.

2.1. The three-point algorithm

In the three-point algorithm, each sequence of three con-
secutive points from the stress signal s[] is considered in
turn. Closed hysteresis loops are identified by comparing
relative stress values. At the start of the algorithm, the
unmodified stress series must be rearranged to begin and
end with the overall maximum (or minimum) stress, as
shown in Fig. 1c and d (modified from Bannantine et al.
[2]). The algorithm then checks for hysteresis loops.

Each check for a hysteresis loop involves comparing the
magnitude of the two stress ranges Xn and Xn�1 formed by
the sequential stress values s[n � 2,n � 1,n],

X n ¼ js½n� � s½n� 1�j;
X n�1 ¼ js½n� 1� � s½n� 2�j;

ð1Þ

where s[] is the stress sequence in the form of a series of
peaks and valleys (local maxima and minima) and n is an
index to the stress series. A hysteresis loop is identified if
Xn P Xn�1, in which case the hysteresis loop s[n � 1,n � 2]
is removed from the series. The remaining stress values
s[n � 4,n � 3,n] are then considered in a similar manner.
If no hysteresis loop is identified then the next sequence
of three points, ending in s[n + 1], is considered and so
on until the entire series is exhausted.

The following pseudocode details the three-point algo-
rithm, f3p(). It shows the hierarchy of the major functions,
which are defined in greater detail in Appendix A.

rearrð Þ frearrange s½ � and delete one or two data points if necessaryg

f3pð Þ f ð Þ

n ¼ 0

1 if at end of s½ � STOP

n ¼ nþ 1; assign next stress value to s½n�
2 if n < 3 GOTO 1

critð Þ
calculate X n and X n�1

if X n < X n�1 GOTO 1

� �

store X n�1 for later fatigue damage calculation

remove X n�1ðs½n� 1; n� 2�Þ from stress

sequence so that s½n� becomes s½n� 2�; n ¼ n� 2

GOTO 2

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

:

ð2Þ

In (2), crit() is the criterion for identifying a hysteresis
loop.

Fig. 1. Arbitrary stress series in stress–strain and stress–time spaces; (a,b)
unmodified and (c,d) modified.

548 C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559

Author's personal copy

The step of calculating the estimated fatigue damage
based on each stress range Xn�1 can be performed during
each iteration or after completion of the algorithm. An
example of the algorithm applied to the modified stress sig-
nal of Fig. 1 is shown graphically in Fig. 2a. Frame 1 shows
the rearranged stress signal of Fig. 1c. The three points and
two stress ranges under consideration at any time are indi-
cated by the dashed lines. The first two stress ranges, high-
lighted in frame 2, do not satisfy the three-point criterion.
Points B, C and D, highlighted in frame 3, do satisfy the
criterion and the hysteresis loop is removed in frame 4.
Other hysteresis loops are identified in frames 7, 10 and
12. Examples of the three-point algorithm implemented
in FORTAN are available in the literature [2,7].

The three-point algorithm is unsuitable for use in a real-
time scenario because it requires the entire stress history to
be rearranged at the start of the analysis. A more suitable
form of the algorithm that is commonly used is presented
by Amzallag et al. [4] and is described subsequently.

2.2. The four-point algorithm

The four-point algorithm differs from the three-point
algorithm in that there is no re-arrangement of the stress
series prior to analysis. This requires an extra point to be
considered at each step in order to identify closed hysteresis
loops. However, it allows the algorithm to be initiated
prior to obtaining all measured stress data, hence allowing
realtime analysis. For comparison, Fig. 3 shows a closed
hysteresis loop and the main criteria that form part of
the three- and four-point algorithms for its detection.

In the four-point algorithm, hysteresis loops are identi-
fied in sequences of three stress ranges, where the second
of the three stress ranges is smaller than or equal to the first
and third (see Fig. 3c). This second stress range is identified
as a hysteresis loop, analysed and discarded from the series
in a similar manner to the three-point algorithm. The stress
ranges considered at each step are

X n ¼ js½n� � s½n� 1�j
X n�1 ¼ js½n� 1� � s½n� 2�j
X n�2 ¼ js½n� 2� � s½n� 3�j

ð3Þ

The four-point algorithm, f4p(), may be described in the
form of pseudocode as

f4pð Þ

f4p1ð Þ

n ¼ 0
pass ¼ 1

1 if at end of s½ � and pass ¼ 1 GOTO 3
if at end of s½ � and pass ¼ 2 STOP
n ¼ nþ 1; assign next stress value to s½n�

2 if n < 4 GOTO 1

critð Þ calculate X n;X n�1 and X n�2

if X n < X n�1 or if X n�2 < X n�1 GOTO 1

� �

store X n�1 for later fatigue damage calculation
remove X n�1ðs½n� 1; n� 2�Þ from stress
sequence so that s½n� becomes s½n� 2�; n ¼ n� 2
GOTO 2

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

f4p2ð Þ

3 n ¼ 0
pass ¼ 2

dblð Þ repeat s½ � sequentially and delete one or two data
points if necessary to maintain the max–min sequence

� �

GOTO 1

8>>>><
>>>>:

9>>>>=
>>>>;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð4Þ

This pseudocode is also expressed as a group of func-
tions, detailed in Appendix.

Fig. 2b shows an illustrative example of the four-point
algorithm applied to the arbitrary stress series of Fig. 1a.
Hysteresis loops are identified in frames 3, 5, 12 and 13.
For the three-point algorithm, the same loops were identi-
fied in frames 7, 10, 3 and 12, respectively, in Fig. 2a. By
frame 8, all closed hysteresis loops in the original stress ser-
ies have been found (EF and GH). The remaining stress
values, called the residue (res[]), form open hysteresis loops
(AD and BC). They are only ‘closed’ for the three-point
algorithm due to the initial rearrangement of the stress ser-
ies (see first line of pseudocode in Section 2.1). The equiv-
alent action for the four-point algorithm is taken in frame 9
by repeating the stress values sequentially. This adds the
stress values J, K, L and M (the repeated values D, A, B
and C, respectively) to give a new sequence D 0DAB-
CJKLMC 0. Points D 0 and C 0 are removed from the central
part of the sequence to maintain the peak–valley sequence,
but remain at the start and end of the new sequence. The
last two hysteresis loops are then identified, leaving the
remaining values in frame 16, which are the same as the res-
idue in frame 8 [4].

Note that Rychlik [6] gives an equivalent definition of
a closed hysteresis loop (referred to as a toplevel-up
cycle), but treats the residue differently. Rychlik’s defini-
tion has the advantage of not requiring the smaller
closed loops to be removed in order to identify the lar-
ger ones.

While the same results are obtained from the three-point
and four-point algorithms for the same data, no general
proof that the two methods are equivalent, is available in
the literature.

3. Properties of four-point algorithm

The following properties of the four-point algorithm
form part of the proof of equivalence of the two algorithms
that follows. The first property is essentially a redefinition
of the four-point criterion and the second is a property
of the four-point criterion, related to the outer values of
a satisfying sequence. The third property relates to the
order in which the criterion is applied, which can be varied
without changing the outcome. The next introduces the
properties of an increasing–decreasing sequence. These
properties are then developed to identify sections of s[],
called ‘end-point bounded sequences’, that can be analysed
in isolation. The following four sections reveal properties
of the first and second pass of the algorithm, the residue,
and the hysteresis loops identified in the first pass and from
the repeated residue. The final property is that the number
of hysteresis loops in rearr(s[]) is equal to the number of
valleys.

Unless otherwise stated, the term maximum and mini-
mum refer to the overall (global) maximum and minimum
stress in the series being analysed.

C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559 549

Author's personal copy

Fig. 2. Sequential steps of the (a) three- and (b) four-point algorithm, in stress–strain space.

550 C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559

Author's personal copy

3.1. The four-point criterion

Property 3.1. A sequence of four points

s[n � 3,n � 2,n � 1,n] satisfies the four-point criterion if,

s½n� 3; n� ¼ ½maxðs½n� 3; n� 2; n� 1; n�Þ;
minðs½n� 3; n� 2; n� 1; n�Þ�

or s½n� 3; n� ¼ ½minðs½n� 3; n� 2; n� 1; n�Þ;
maxðs½n� 3; n� 2; n� 1; n�Þ� ð5Þ

Proof. This property can be inferred directly from the
algorithm definition (see (4)). h

Remark. Such a sequence of four points will be referred to
as a ‘satisfying sequence’.

3.2. Replacing the outer values does not affect the four-point

criterion

In this section, it is shown that replacing the outer values
of a satisfying sequence with a higher peak and lower valley
does not alter whether the four points satisfy the four-point
criterion.

Property 3.2

critð4; n; s½n� 3; n� 2; n� 1; n�Þ
¼ critð4; n; ½x1; s½n� 2; n� 1�; x2�Þ; ð6Þ

where s[n � 3,n � 2,n � 1,n] is a satisfying sequence and

where
x1 6 s½n� 3� and x2 P s½n�;

if s½n� is a peak ðs½n� > s½n� 1�Þ; or

x1 P s½n� 3� and x2 6 s½n�;
if s½n� is a valley ðs½n� < s½n� 1�Þ:

Proof. By definition, the two inner values of a satisfying se-
quence, s[n � 1,n � 2], form the closed hysteresis loop.
According to Property 3.1, the two outer values must be
the overall minimum and maximum from the sequence of
four (see also Fig. 3). Thus, increasing the outer peak or
decreasing the outer valley (by replacement) will not affect
whether the sequence satisfies the four-point criterion. h

Remark. This property allows points to be removed to
maintain the peak–valley sequence when joining series of
stress values without affecting the identification of any
closed hysteresis loops, and also forms the basis for the
next property to be considered.

3.3. Uniqueness of closed hysteresis loops with respect to

order of application of four-point criterion

The four-point algorithm (4) consists of the four-point
criterion crit(), a set of instructions ‘nested’ around this
criterion for applying it to a series in a specific order
f4p1(), and a set of instructions nested around this for deal-
ing with the residue, f4p(). It will be proven that the order
in which the criterion crit() is applied is not critical to the
outcome of the algorithm.

Property 3.3

f4paðs½ �Þ ¼ f4p1ðs½ �Þ; ð7Þ
where f4pa() is an alternative algorithm to f4p1() that tests

sub-sequences of four points from the series in a random or-

der for closed hysteresis loops until all have been identified,
as defined in Appendix.

This will be proven by considering the possibility of the
existence of closed hysteresis loops that are adjacent or
overlapping in the strain history series and considering
the implications of removing one hysteresis loop on the
identification of another. That is, it will be shown that
the removal of a hysteresis loop in any given order does
not alter the identification of nearby hysteresis loops.

Proof. Consider a satisfying sequence s[n � 3,n � 2,
n � 1,n]. If the sequence s[n � 1,n,n + 1,n + 2] also satis-
fies the four-point criterion then the hysteresis loop
s[n,n + 1] can be removed without altering the identifica-
tion of the first hysteresis loop or its magnitude. The point
s[n] will be replaced with s[n + 2] in the first sequence. This
does not alter the magnitude of the hysteresis loop, which is
formed by s[n � 2,n � 1]. Furthermore, s[n + 2] will be
equal to or greater than s[n] if it is a local maxima and
equal or smaller if it is a local minima, thus not affecting
the identification of the first hysteresis loop as per Property

Stress

Time

X1
X2 X1

X2

X3

s[n-2]
s[n]

s[n-1]

 Three-point, closed
 loop if X1 X2

Four-point, closed
 loop if X1 X2 X3

s[n-2]
s[n]

s[n-1]

s[n-3]

s[n]

s[n-1]

s[n-2]

s[n-3]

Strain

Stress

Fig. 3. Closed hysteresis loop in: (a) stress–strain space and (b,c) stress–time space, showing criteria for detection.

C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559 551

Author's personal copy

3.2 (6). Likewise, removal of the first hysteresis loop will
not affect the magnitude or identification of the second.
Similar arguments can be used to show that removal of a
hysteresis loop will not affect the identification or magni-
tude of any other hysteresis loops. Therefore by general-
isation of this case, the order in which the criterion is
applied is not critical. h

Remarks. Fig. 4 demonstrates this property for the case
outlined in the proof. Frames b and c show the paths taken
when different sub-sequences of four points are considered
first, with frame d showing identical remaining stress values
after two closed hysteresis loops have been removed.

3.4. No closed hysteresis loops in increasing–decreasing

sequences

In this section, it is shown that there are no closed hys-
teresis loops (satisfying sequences) in an increasing–
decreasing sequence and that there must be closed hystere-
sis loops in all other sequences. An increasing–decreasing
sequence is a sequence in which successive stress ranges
js[n] � s[n � 1]j preceding one of the extrema are all higher
than the previous stress range, and successive stress ranges
after the extrema are all lower than the previous stress
range. An example of this is shown in Fig. 5. Note that
the extrema can be the first or last point in the sequence,
meaning that a sequence that increases monotonically over
its length is considered a special type of increasing–decreas-
ing sequence, as is a sequence that decreases
monotonically.

Property 3.4. [f4p1(s[])]o = 0 if s[] is an increasing–

decreasing sequence, otherwise [f4p1(s[])]o > 0. The sub-

script ‘o’ refers to the stress ranges that are output, not the

residue. A sequence s[1, . . ., n*, . . .,N] is increasing–decreas-

ing if,

sj½n� � s½n� 1�j > js½n� 1� � s½n� 2�j for all n 6 n�

and js½n� � s½nþ 1�j > js½nþ 1� � s½nþ 2�j for all n P n�

ð8Þ

where n* can be either the maximum or minimum (B or A,
respectively, in Fig. 5). Note that if the residue has two max-

imums, n* must be the overall minimum which will be located

between the two maximums, and vice versa.

Proof. Firstly it is noted that every sub-sequence of an
increasing–decreasing sequence must also satisfy (8). Fur-
thermore, (8) is mutually exclusive of the definition of a sat-
isfying sequence in Property 3.1 (5), (see Fig. 3). Thus, no
satisfying sequence can be found in an increasing–decreas-
ing sequence since the first pair of stress ranges is decreas-
ing and the next is increasing. Therefore, there can be no
closed hysteresis loops in an increasing–decreasing se-
quence. This is evident in Fig. 5a. Furthermore, if (8) is
not satisfied there must be a sequence of three consecutive

stress ranges in the sequence with the central stress range
being equal to or smaller than the outer two, i.e. the se-
quence must contain a ‘satisfying sequence’ and a closed
hysteresis loop. Thus, the converse is also true. h

Remarks. Note that three consecutive equal stress ranges
can satisfy the definition of a satisfying sequence but not
the definition of an increasing–decreasing sequence. Eq.
(8) can be satisfied with two equal consecutive stress ranges
and n* being the point they have in common.

3.5. Independence of ‘end-point bounded sequences’

In this section, it will be proven that a sequence of points,
in which the first and last points are the maximum and min-
imum of that sequence, can be analysed separately from the
rest of the series without altering the outcome of the algo-
rithm. Fig. 6 shows two examples of four-point analyses
of a series containing an end-point bounded sequence.
Frame a shows the initial stress series, followed by frames
b and c in which two hysteresis loops have been removed
in each case. Frame b shows the normal order of hysteresis
loop identification while frame c shows the alternative case
of removing two hysteresis loops from within the end-point
bounded sequence first. Note that in frame c, none of the
points outside of the end point bounded sequence are within
the satisfying set of four points for removal of the two
loops. In frame d, all four closed hysteresis loops have been
removed. The identified loops were identical in both cases,
as is the remaining sequence of points.

Property 3.5

f4pðs½1; . . . ;N �Þ ¼ f4pðs½1; . . . ; na; nb; . . . ;N �Þ
þ f4p1ðs½na; . . . ; nb�Þ; ð9Þ

where s[na, . . . ,nb] is an ‘end-point bounded sequence’, which

is defined as

s½na�P s½n�P s½nb� or s½na� 6 s½n� 6 s½nb�
for all na 6 n 6 nb: ð10Þ

Proof. It can be concluded from Property 3.3 that if it
was possible to identify (and remove) all intermediate
points (i.e. all points between s[na] and s[nb]) as closed
hysteresis loops then (9) would hold. That is, combin-
ing Property 3.3 (7) and the definition f4pa() of in
Appendix,

f4p1ðs½1; . . . ;N �Þ ¼ f4paðs½1; . . . ;N �Þ
¼ f4paðs½1; . . . ; na; nb; . . . ;N �Þ
þ f4paðs½na; . . . ; nb�Þ

¼ f4p1ðs½1; . . . ; na; nb; . . . ;N �Þ
þ f4p1ðs½na; . . . ; nb�Þ ð11Þ

if f4pa(s[na, . . .,nb]) and f4p1 (s[na, . . .,nb]) remove all the
intermediate points, s[na + 1, . . .,nb � 1]. The absence of

552 C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559

Author's personal copy

these intermediate points from the residue makes (11)
equivalent to (9).

Furthermore, it is always possible to identify (and
remove) all intermediate points if s[na, . . .,nb] satisfies (10),
because the conditions defined in (10) and the conditions for
an increasing–decreasing sequence given in Property 3.4 (8)
are mutually exclusive for all but the trivial case of a series
consisting of only two points. That is, s[na,. . .,nb] can only
satisfy Property 3.4, (8) and (10) if it consists of only two
points. If it contained an intermediate point, (8) would
require that this point be greater than both s[na] and s[nb], or
less than both of them. However, (10) would require that the

intermediate point lie between them or is equal to them.
Thus, it has been shown using (10), (11) and Property 3.4
that (9) holds for all end-point bounded sequences. h

Remarks. An end-point bounded sequence (10) is similar
to a satisfying sequence (5), except that a satisfying se-
quence must contain four points whereas an end-point
bounded sequence can contain any positive even number
of points. (The number of points must be even so that
the first and last points are a peak and valley.) Thus, a sat-
isfying sequence is a type of end-point bounded sequence.
The more general end-point bounded sequence is used later
to effectively break the sequence being analysed down into
the residue and a number of end-point bounded sequences.

3.6. Relationship between first and second pass of algorithm

Apart from the inclusion of the dbl() function for treat-
ing the residue, the second pass of the four-point algorithm
is equivalent to the first pass. That is,

Property 3.6

f4p2ðres½ �; out½ �Þ ¼ out½ � þ ½f4p1ðdblðres½ �ÞÞ�o: ð12Þ

Strain

Stress

Time

Stress

s[n-3]

s[n+2]s[n+2]

s[n-3]

Strain

Stress

Time

Stress

s[n-2]

s[n-1]

s[n-3]

s[n+2]s[n+2]
s[n-2]

s[n-1]

s[n-3]

normal order, consider s[n-3..n]
first and remove s[n-2,n-1]

alternative order, consider s[n-1..n+2]
first and remove s[n,n+1]

Strain

Stress

Time

Stress

s[n-2]

s[n]

s[n-1]

s[n-3]

s[n+1]

s[n+2]s[n+2]

s[n+1]

s[n]

s[n-2]

s[n-1]

s[n-3]

Strain

Stress

Time

Stress

s[n]

s[n-3]

s[n+1]

s[n+2]s[n+2]

s[n+1]

s[n]

s[n-3]

same stress ranges identified, same
values left after two loops removed:

Fig. 4. Demonstration of uniqueness of closed hysteresis loops: (a) initial series, (b and c) alternative intermediate steps, and (d) remaining points.

Strain

Stress
B

A

Stress

Time

B

A

Fig. 5. An increasing–decreasing sequence in (a) stress–strain space and
(b) stress–time space.

C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559 553

Author's personal copy

where the subscript ‘o’ refers to the stress range component

of the output. For future use this notation can be dropped

to be expressed as

f4p2ðres½ �; out½ �Þ ¼ out½ � þ f4p1ðdblðres½ �ÞÞ: ð13Þ

Proof. This property can be inferred directly from the def-
inition of f4p2() in Appendix. The two lines of pseudocode
are equivalent to (12). h

Remarks. It is noted that based on this property, the four-
point algorithm may be redefined as

f4pðs½ �Þ ¼ f4p1ðs½ �Þ þ f4p1ðdblðres½ �ÞÞ: ð14Þ

3.7. The residue is an increasing–decreasing sequence

Property 3.7. The residue from the first pass of the four-

point algorithm is an increasing–decreasing sequence.

Proof. This follows directly from Property 3.4 because the
residue is by definition a sequence with no remaining closed
hysteresis loops. If the residue were not an increasing–
decreasing sequence, it would contain closed hysteresis
loops as shown in Section 3.4.

3.8. Residue points define bounds of end-point bounded

sequences in the original series

According to Property 3.5, every pair of points that
remains in the residue are the end points of an end-point
bounded sequence in the original stress series, though some
may consist of only two points.

Property 3.8

f4pðs½ �Þ ¼ f4pðres½ �Þ

þ
X

f4p1ðend-point bounded sequencesÞ: ð15Þ

Proof. Two points alone will always form an end-point
bounded sequence, according to Property 3.5. Any pairs
of points that were removed from between the remaining
pairs in the residue must have been bound by them, or
bound by other points that were bound by them, as per
the definition of a satisfying sequence (see Property 3.1).
Thus, they satisfied the conditions of an end-point bounded
sequence (see Property 3.5). Thus, the first pass of the algo-
rithm is equivalent to extracting all of these end-point
bounded sequences and analysing them separately as de-
scribed by (9). h

Time

Stress

Strain

Stress

Time

Strain

Stress

Strain

Stress

Time

Stress

normal order
alternative order, analyse end-
point bounded sequence first

same stress ranges identified, same
values left after four loops removed:

Strain

Stress

Time

Stress

Stress

Fig. 6. Demonstration of the independence of an arbitrary end-point bounded sequence (indicated by dashed lines).

554 C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559

Author's personal copy

3.9. Location of hysteresis loops identified in second pass of

algorithm

In this section, it will be proven that all hysteresis loops
identified in the second pass of the algorithm are located in
the central region of the repeated residue between the two
largest stress ranges. More specifically,

Property 3.9

f4p1ðres½1; . . . ; im r; im r þ 1; . . . ;N 0; p; . . . ; im r; im r

þ 1; . . . ;N �Þ
¼ f4p1ðres½im r; im r þ 1; . . . ;N 0; p; . . . ; im r; im r þ 1�Þ;

ð16Þ

where im_r is the index of the first extrema (overall maximum

or minimum) in the residue, N is the number of points in the

sequence, and

N 0 ¼ N or N � 1 and p ¼ 1 or 2; ð17Þ
depending on whether a point is removed to maintain the

peak–valley sequence.

Proof. The proof consists of showing that the sub-sequence
of res[] on the right-hand side of (16) contains all of the
points necessary to identify the hysteresis loops. According
to Property 3.7 the residue is an increasing–decreasing
sequence. Thus, the first part of the repeated residue
res[1, . . ., im_r] is an increasing sequence and contains no hys-
teresis loops. The last part res[im_r + 1, . . .,N] is a decreasing
sequence and thus also contains no closed hysteresis loops.
The central part res[im_r + 1, . . ., N 0,p, . . ., im_r] consists of
one end-point bounded sequence so all points from the cen-
tral part, other than res[im_r + 1, im_r] will be identified as
closed hysteresis loops and removed, as shown in Property
3.5. This leaves res[1, . . ., im_r, im_r + 1, im_r,
im_r + 1, . . .,N], which contains one last satisfying sequence
(see Section 3.1) formed by res[im_r, im_r + 1, im_r, im_r, + 1].
After this hysteresis loop is removed the remaining points
are res[1, . . ., im_r, im_r + 1, . . .,N], which is the original resi-
due. Therefore, none of the points removed from the
sequence in (16) are required for the identification of the
hysteresis loops so removing them does not affect the results
of the four-point algorithm. h

Remarks. Fig. 7 highlights the central part of the repeated
residue identified by (16) from a sample stress history. The
dashed stress ranges indicate which points are not present
on the right-hand side of Eq. (16).

Note that although it is possible to have three extremas
in the residue, the removal of one as per (16) does not
negate the equality. There can be either two maximums
separated by a minimum, or two minimums separated by
a maximum. This will give six extremas in the repeated res-
idue. In the case of two maximums in the original residue,
there will be two maximums in the repeated residue with no
(overall) minimum separating them. Thus, one of these

maximums must be removed as part of a smaller hysteresis
loop. This leaves five extremas. Two will be removed with
the identification of the largest hysteresis loop, leaving
three, which is insufficient for the identification of another
hysteresis loop. The removal of one extrema as per (16)
leaves four instead of five, which is still sufficient for the
identification of the last (the largest) hysteresis loop. The
same argument applies for two minimums in the original
residue.

3.10. Number of hysteresis loops in a sequence of points

Property 3.10. The number of hysteresis loops identified by

f4p(rearr(s[])) is equal to the number of valleys in the

sequence rearr(s[]).

Proof. According to Property 3.5 and the definition in
Appendix, rearr(s[]) consists of two end-point bounded se-
quences bound by a maximum on each end and a minimum
somewhere in between. Thus, one hysteresis loop will be re-
moved for each valley other than the minimum. The mini-
mum is included in the remaining hysteresis loop which is
identified in the second pass of the algorithm. Note that
only one hysteresis loop is identified because the residue
consists of only three points. h

Remark. Fig. 1c can help to visualise this property.

4. Proof of equivalence of four-point and three-point

algorithms

The properties developed in Section 3 will now be used
to show that the two algorithms are equivalent. First, it
will be shown that the output of the four-point algorithm
is not changed if the stress series is first manipulated as it
is at the start of the three-point algorithm. It will then be
shown that after this manipulation, the two algorithms
will always produce the same output. A slightly more
complex proof is required for the case where there are
multiple peaks in the original stress series equal to the
overall maximum stress. For simplicity, the proof is first
established with the assumption that there is only one
such overall maximum stress value, and subsequently
generalised.

Both algorithms use the same function to estimate the
fatigue damage from the stress ranges, so it is sufficient
to prove that

f4pðs½ �Þ ¼ f3pðrearrðs½ �ÞÞ: ð18Þ

Note that the estimated fatigue damage, which is based on
the linear damage rule (see Section 1), is not affected by the
order of the stress ranges output from any rainflow algo-
rithms.

Fig. 8 shows the derivative relationship between the var-
ious properties, where the shaded properties form the proof
of equivalence to be detailed in the following.

C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559 555

Author's personal copy

4.1. Consistency of four-point algorithm after stress series

manipulation

It is first proven that the manipulation of the stress series
performed at the start of the three-point algorithm can also
be performed at the start of the four-point algorithm with-
out altering its outcome,

Property 4.1

f4pðs½ �Þ ¼ f4pðrearrðs½ �ÞÞ: ð19Þ

Proof. This will be proven using a number of modifications
equivalent to rearr(), each of which do not effect the out-
come of the algorithm.

Combining Properties 3.6 (14) and 3.9 (16) gives

f4pðs½ �Þ ¼ f4p1ðs½ �Þ þ f4p1ðres½im r; im r

þ 1; . . . ;N 0; p; . . . ; im r; im r þ 1�Þ: ð20Þ

Note also that, from the definition of rearr() in Appen-
dix

res½im r; im r þ 1; . . . ;N 0; p; . . . ; im r; im r þ 1�
¼ rearrðres½ �Þ&res½imin�; ð21Þ

where & refers to the addition of the minimum to the start
of the sequence if res[im_r] is a peak, or to the end of the se-
quence res[im_r] if is a valley. Combining Property 3.8 (15)
with (20), (21) and f4p1(res[]) = 0 gives

f4pðs½ �Þ ¼ f4p1ðrearrðres½ �Þ&res½imin�Þ

þ
X

f4p1 ðend-point bounded sequencesÞ:
ð22Þ

Consider now the corollary application of Property 3.5
(the independence of ‘end-point bounded sequences’) to
(22). In particular, by ‘reinserting’ the end-point bounded
sequences into the modified residue, the summation term
may be removed and res[] replaced with s[]. This would
give

f4pðs½ �Þ ¼ f4p1ðrearrðs½ �Þ&s½imin�Þ: ð23Þ
Based on Property 3.5, the hysteresis loops contained with-
in the two end-point bounded sequences forming rearr(s[])
could be extracted by f4p1(rearr(s[])), leaving a residue of
three points,

f4p1ðrearrðs½ �Þ&s½imin�Þ ¼ f4p1ðrearrðs½ �ÞÞ þ f4p1ðres½s½imax�;
s½imin�; s½max��&s½imin�Þ: ð24Þ

The second term, f4p1(res[]&s[imin]) identifies a single hys-
teresis loop. The same hysteresis loop would be identified
by a second pass analysis of the residue. Thus,

f4p1ðrearrðs½ �Þ&s½imin�Þ ¼ f4p1ðrearrðs½ �ÞÞ
þ f4p2ðres½s½imax�; s½imin�; s½imax��Þ:

ð25Þ
Substituting (25) into (23) gives

f4pðs½ �Þ ¼ f4p1ðrearrðs½ �ÞÞ
þ f4p2ðres½s½imax�; s½imin�; s½imax��Þ

¼ f4pðrearrðs½ �ÞÞ ð26Þ

because [s[imax],s[imin],s[imax]] is the residue from f4p1(re-
arr(s[])). Therefore, (19) holds and the result of the four-
point algorithm does not change if, at the start, the stress

Fig. 7. Removal of ‘outer’ stress values from the repeated residue, as per Eq. (16).

3.1 3.4 3.7 3.9

3.3 3.5 3.8

3.10

4.4

3.2

3.6

4.1

4.2 4.3

4.5 (18)

Fig. 8. Flow chart of property dependencies.

556 C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559

Author's personal copy

series is rearranged to begin and end with the maximum, as
it is for the three-point algorithm. h

Remarks. The function rearr(res[]) does not separate any
consecutive stress values because the maximum at which
the series is broken is left at the beginning and end of the
new series. Thus, it will be possible to reinsert the end-point
bounded sequences between the remaining stress values.
While the function may remove one or both end points
to maintain the peak–valley sequence, they will be replaced
with a higher value if they are a maximum or a lower value
if the are a minimum. Thus, this removal will not affect the
identification of any hysteresis loops from within the end-
point bounded sequences (see Property 3.2). Also, res[imin]
can be replaced with s[imin] as they are the same value.
Thus, (23) holds.

4.2. Equivalence of three-point and four-point criteria after
series manipulation

In this section, it is shown that when the two algorithms
are applied to rearr(s[]), the two criteria and the logic for
applying them are equivalent. That is,

Property 4.2�
critðq; n; s0½ �Þ AND n P q

�
q¼3;n

¼
�

critðq; n; s0½ �Þ AND n P q
�

q¼4;n

; ð27Þ

holds for all values of n that will be encountered by the algo-

rithm in analysing rearr(s[]), except when the last three
available points are being considered. In this case, the second

pass of the four-point algorithm is equivalent to the three-

point algorithm. It is assumed that there is only one peak

equal to the maximum stress in the original series.

Proof. Several different cases need to be considered to
show that this property holds under all possible circum-
stances. For conciseness and clarity, the reasons for the
equivalence of the criteria are listed in Table 1 according
to the number of stress values that have been input (minus
those removed after the identification of hysteresis loops).
This is the number n in the left-hand column. For direct
comparison, the two columns on the right show the out-
come of the two sets of criteria. If four or more points have
been input, the criteria either both return true or both re-
turn false, depending on the stress values. For the general
case involving five or more points the reasons for equiva-
lence, expressed as a comparison of the stress values, de-
pend on whether n is even or odd.

As an example of one case from the table, consider the
case where five points have been read in. This case is
detailed in the last two rows of the table, which begin with
n = 5+. The variable n is odd, so the second example given
in each explanation in the second column applies. If
s[5] < s[3] both sets of criteria will return F (false) because

Xn < Xn�1 (see Appendix), as described in the second last
row. If s[5] P s[3] then both sets of criteria return T (true)
because Xn P Xn�1, as described in the bottom row. The
four-point criterion also requires that Xn�2 P Xn�1, how-
ever this must also be true otherwise the criterion would
have returned true at n = 4. The fifth point will only be
read in if the criteria fail at s[4]. h

Thus, the two sets of criteria and the logic for applying
them are equivalent.

4.3. Equivalence of three-point algorithm and four-point

algorithms after series manipulation

In Section 4.2, it has been shown that the criteria crit()
for the three-point and four-point algorithms are equiva-
lent. The equivalence of the algorithms as a whole, f4p()
and f3p(), when applied to rearr(s[]) will be proven in the
following:

Property 4.3

f4pðrearrðs½ �ÞÞ ¼ f3pðrearrðs½ �ÞÞ; ð28Þ
with the assumption of one maximum in s[].

Proof. Property 3.6 (14) shows that the four-point algo-
rithm f4p() can be defined in terms of f4p1(). The defini-
tions of f4p1() and f3p() in Appendix show that, apart
from rearranging the points at the start of the algorithm,
the only difference between these two algorithms is the cri-
teria and logic for applying them. Thus, it is sufficient to
show that the criteria and logic for applying them are
equivalent and (28) follows directly from Property 4.2
(27). Therefore, the four-point algorithm is equivalent to
the three-point algorithm when applied to rearr(s[]). h

Remarks. Properties 4.1 (19) and 4.3 (28) combine to give
the proof that is sought (18), but only under the given
assumption of a single maximum. This assumption is relaxed
in Sections 4.4 and 4.5. In addition to the identification of

Table 1
Equivalence of three and four-point criteria

n Condition/reason for equivalence crit(q,n,s 0[])
returns

3p 4p

1,2 n < q F F
3 n < 4,s[1] > s[3] F F
3 s[1] = s[3] T Fa

4 s[4] > s[2] F F
4 s[4] 6 s[2], four-point criterion satisfied because

s[1] > s[3]
T T

5+ s[neven] > s[n � 2] or s[nodd] < s[n � 2] F F
5+ s[neven] 6 s[n � 2] or s[nodd] P s[n � 2], four-point

criterion satisfied because s[neven � 3] > s[n � 1] or
s[nodd � 3] < s[n � 1], otherwise both criteria would
have returned TRUE at n � 1 and s[n � 2,n � 3]
would have been removed

T T

a The same hysteresis loop is identified in the second pass of the four-
point algorithm over the last three points. This condition only arises for
the last three points.

C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559 557

Author's personal copy

the same hysteresis loops (28), the hysteresis loops are also
identified in the same order. The order of identification
does not alter the estimated fatigue, however manipulating
the input so that the hysteresis loops are identified in the
same order facilitates the present proof.

The same reasoning can be used to show that the algo-
rithms are equivalent when analysing a peak–valley
sequence beginning and ending with the overall minimum.

4.4. Breaking the series at intermediate maximums

So far it has been shown that the two algorithms are
equivalent when applied to an ‘original’ series of points with
only one value equal to the overall maximum stress. For
completeness, it still needs to be proven that the same result
is produced when the algorithms are applied to a series of
points with multiple stress values equal to the maximum.
When rearranged, such a series will have a maximum on
each end and a number of intermediate maximums. It will
first be proven that the four-point algorithm output remains
the same if the (rearranged) stress series is broken into sep-
arate sequences at each intermediate global maximum:

Property 4.4

f4pðrearrðs½ �ÞÞ ¼
X

i

f4pðbreakiðrearrðs½ �ÞÞÞ: ð29Þ

Proof. When the stress series is broken at each intermedi-
ate maximum, the maximum appears at the end of one se-
quence and at the beginning of the next and the sequences
are analysed separately. Each broken section consists of
two ‘end-point bounded sequences’ (see Property 3.5)
which remain unchanged. Thus, all hysteresis loops with
a peak that is not the maximum stress will still be identified
in the same way in the first pass of the four-point algorithm
over each of the new sequences.

Once these hysteresis loops have been removed, there is
one valley remaining in each broken section. One hysteresis
loop is identified for each such valley (see Property 3.10).
The only remaining peaks for them to be paired with are
the maximums. Thus, no hysteresis loops are omitted or
introduced because no valleys are omitted or added by
break(), and the loops that are identified must be of the
same magnitude, so (29) holds. h

4.5. General equivalence after breaking series

When the stress series is broken as described in Sec-
tion 4.4, the two algorithms again analyse the series and
identify hysteresis loops in the same order because the
two sets of criteria for identifying hysteresis loops are again
equivalent:

Property 4.5

X
i

f4pðbreakiðrearrðs½ �ÞÞÞ ¼ f3pðrearrðs½ �ÞÞ: ð30Þ

Proof. Once break() is applied, as described in Section
4.4, the argument used in Section 4.2 to show that
crit(3,n, s 0[]) and crit(4, n, s 0[]) and the logic for applying
them are equivalent holds without assumptions, as does
Property 4.3. The only difference is that there can be mul-
tiple instances in which the four-point algorithm goes to
the second pass at n = 3. When the next broken section
is analysed by the four-point algorithm, the two algo-
rithms again follow the same path starting with n = 1
and s[1] = max(s[]).

Remark. By building on the proof presented in Sections
4.2 and 4.3 the necessity to assume a single maximum in
the original unmodified series has been removed. Thus,
the two algorithms are equivalent for any series of peaks
and valleys.

5. Conclusion

The equivalence of the two algorithms has been
demonstrated by showing that the input stress series
can be modified without affecting the outcome of the
four-point algorithm, and that after such modifications
the two algorithms identify the same hysteresis loops in
the same order. In particular, it has been shown
that:

� The outcome of the four-point algorithm is not changed
if the stress series is first rearranged as it is for the three-
point algorithm.
� The two algorithms produce the same outcome by fol-

lowing similar paths when applied to such a rearranged
stress series, assuming there are only two peaks equal to
the maximum (there is always a minimum of two – the
first and last stress value).
� If there are three or more stress values in the modified

series equal to the maximum, the series can be broken
at an intermediate maximum without changing the out-
come of the four-point algorithm.
� When applied to such broken series, the four-point algo-

rithm again follows a similar path and produces the
same result as the three-point algorithm.

Thus, the same amount of estimated fatigue damage is
calculated by the three-point and four-point algorithms
because they both identify the same hysteresis loops. The
only difference between the outcomes of the algorithms is
the order in which the hysteresis loops are listed in the
output.

Acknowledgement

The authors thank the Cooperative Research Centre for
Mining and the Australian Coal Association Research Pro-
gram (ACARP) for financially supporting this research.

558 C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559

Author's personal copy

Appendix A. Function definitions

The series of stress values s[] is obtained from measured
data the same way by both algorithms, by extracting the
peaks and valleys. Hence, that part of the algorithm will
not be defined. For the following definitions s[] is repre-
sented as s[1, . . .N] where s[1] is the first point (peak or val-
ley), s[N] the last point, and N is the number of points in
the series. The overall maximum is s[imax], where imax is
an index between 1 and N. The residue res[] is also repre-
sented in this manner.

References

[1] Weibull W. Fatigue testing and analysis of results. Pergamon Press;
1961.

[2] Bannantine JA, Comer JJ, Handrock JL. Fundamentals of
metal fatigue analysis. Englewood Cliffs (NJ): Prentice-Hall; 1990.

[3] Matsuishi M, Endo T. Fatigue of metals subjected to varying stress.
Presented to Japan Society of Mechanical Engineers, Fukuoka, Japan,
1968.

[4] Amzallag C, Gerey JP, Robert JL, Bahuaud J. Standardization of the
rainflow counting method for fatigue analysis. Int J Fatigue
1994;16:287–93.

[5] Dowling NE. Fatigue failure predictions for complicated stress–strain
histories. J Mater 1972;7(1):71–87.

[6] Rychlik I. A new definition of the rainflow cycle counting method. Int
J Fatigue 1987;9(2):119–21.

[7] Downing SD, Socie DF. Simple rainflow counting algorithms. Int J
Fatigue 1982;4(1):31–40.

Function/
variable

Definition/description

s[] the original unmodified series of peaks and valleys
s0[] modified series of peaks and valleys
q 3 or 4, indicates which algorithm to use in f() and

crit()
n integer, indicates stress values to be considered by

crit()
res[] residue from first pass of four-point algorithm
out[] output of each algorithm – a list of stress ranges

rearr(s[1,. . .,N]) function that rearranges a stress series to begin and
end with the maximum (Section 2.1)
s0[] = s[imax, . . .,N

0
,p, . . ., imax]

where N0 = N or N � 1 and p = 1 or 2, depending on
whether a point is removed to maintain the max–min
sequence
return s 0[]

crit(q,n, s0[]) function representing the three- and four-point criteria
Xn = js 0[n] � s 0[n � 1]j
Xn�1 = js 0[n � 1] � s0[n � 2]j
Xn�2 = Xn�1 + 1
if q = 4 Xn�2 = js0[n � 2] � s0[n � 3]j
if Xn P Xn�1 and Xn�2 P Xn�1 return TRUE
if Xn < Xn�1 or Xn�2 < Xn�1 return FALSE

f(q,s[]) function representing core of three- and four-point
algorithms
n = 0
j = 0
for i = 1,. . ., length(s[])

n = n + 1
s 0[n] = s[i]
while n P q and crit(q,n, s 0 [])

j = j + 1
out[j] = Xn�1

s0[] = s0[1, . . .,n � 3,n]
n = n � 2

return res[] = s 0[],out[]

f3p(rearr(s[])) function representing the three-point algorithm, as
described in Section 2.1 excluding rearr() and the
step of estimating the fatigue damage
[res[],out[]] = f(3, rearr(s[]))
return out[]

f4p(s[]) function representing the four-point algorithm, as
described in Section 2.2 excluding the step of
estimating the fatigue damage
[res[],out[]] = f4p1(s[])
out[] = f4p2(res[],out[])
return out[]

Function/
variable

Definition/description

f4p1(s[]) function representing the first pass of the four-point

algorithm

[res[],out[]] = f(4,s[])
return res[], out[]

f4p2(res[],out[]) function representing the second pass of the four-
point algorithm, including treatment of the residue
[s 0[], out2[]] = f4p1(dbl(res[]))
return (out[] + out2[])
The addition of stress range vectors
out[] = out[] + out2[] refers to the combination of
the two sequences into one longer sequence, not the
addition of the elements

dbl(res[]) function representing the treatment of residue
s 0[] = res[1, . . .,N 0,p, . . .,N]

where N0 = N or N � 1 and p = 1 or 2, depending
on whether a point is removed to maintain the peak–
valley sequence return s0[]

f4pa(s[]) alternative algorithm to f4p1() (see Property 3.3)
s 0[] = s[]
j = 0
while crit(4,n, s 0[]) = TRUE for any n s.t.
4 6 n 6 length(s 0[])

n = random(4, . . ., length(s0[]))
if crit(4,n, s0[])

j = j + 1
out[j] = Xn�1

s 0[] = s0[1, . . .,n � 3,n, . . ., length(s 0[])]
n = n � 2

return res[] = s0[],out[]

break(rearr(s[])) function that breaks the stress series at each
intermediate maximum (used in Section 4.4)
s 0[] = rearr(s[])
s 0max = s 0[1]
start = 1
n = 1
while n < length(s 0[])

n = n + 1
if s 0[n] = smax

return s 0[start, . . .,n]
start = n

C.H. McInnes, P.A. Meehan / International Journal of Fatigue 30 (2008) 547–559 559

